Progressive construction of a parametric reduced-order model for PDE-constrained optimization

نویسندگان

  • Matthew J. Zahr
  • Charbel Farhat
چکیده

An adaptive approach to using reduced-order models as surrogates in PDE-constrained optimization is introduced that breaks the traditional offline-online framework of model order reduction. A sequence of optimization problems constrained by a given Reduced-Order Model (ROM) is defined with the goal of converging to the solution of a given PDE-constrained optimization problem. For each reduced optimization problem, the constraining ROM is trained from sampling the High-Dimensional Model (HDM) at the solution of some of the previous problems in the sequence. The reduced optimization problems are equipped with a nonlinear trust-region based on a residual error indicator to keep the optimization trajectory in a region of the parameter space where the ROM is accurate. A technique for incorporating sensitivities into a Reduced-Order Basis (ROB) is also presented, along with a methodology for computing sensitivities of the reduced-order model that minimizes the distance to the corresponding HDM sensitivity, in a suitable norm. The proposed reduced optimization framework is applied to subsonic aerodynamic shape optimization and shown to reduce the number of queries to the HDM by a factor of 4-5, compared to the optimization problem solved using only the HDM, with errors in the optimal solution far less than 0.1%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Parametrically-Robust CFD-Based Reduced-Order Models for PDE-Constrained Optimization

A method for simultaneously constructing a reduced-order model and using it as a surrogate model to solve a PDE-constrained optimization problem is introduced. A reducedorder model is built for the parameters corresponding to the initial guess of the optimization problem. Since the resulting reduced-order model can be expected to be accurate only in the vicinity of this point in the parameter s...

متن کامل

Accelerating PDE-constrained optimization by model order reduction with error control

Design optimization problems are often formulated as PDEconstrained optimization problems where the objective is a function of the output of a large-scale parametric dynamical system, obtained from the discretization of a PDE. To reduce its high computational cost, model order reduction techniques can be used. Two-sided Krylov-Padé type methods are very well suited since also the gradient to th...

متن کامل

Accelerating PDE constrained optimization by the reduced basis method: application to batch chromatography

In this work, we show that the reduced basis method accelerates a PDE constrained optimization problem, where a nonlinear discretized system with a large number of degrees of freedom must be repeatedly solved during optimization. Such an optimization problem arises, for example, from batch chromatography. Instead of solving the full system of equations, a reduced model with a small number of eq...

متن کامل

Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space

A model-constrained adaptive sampling methodology is proposed for reduction of large-scale systems with high-dimensional parametric input spaces. Our model reduction method uses a reduced basis approach, which requires the computation of high-fidelity solutions at a number of sample points throughout the parametric input space. A key challenge that must be addressed in the optimization, control...

متن کامل

CVaR Reduced Fuzzy Variables and Their Second Order Moments

Based on credibilistic value-at-risk (CVaR) of regularfuzzy variable, we introduce a new CVaR reduction method fortype-2 fuzzy variables. The reduced fuzzy variables arecharacterized by parametric possibility distributions. We establishsome useful analytical expressions for mean values and secondorder moments of common reduced fuzzy variables. The convex properties of second order moments with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1407.7618  شماره 

صفحات  -

تاریخ انتشار 2014